
The Impact of Implementing Containerization
into CI/CD Testing Pipelines

Or Brener[1140102] email obrener@uoguelph.ca,
Danindu Marasinghe[1093791] email dmarasin@uoguelph.ca, and

Eric Morse[1141504] email emorse@uoguelph.ca

University of Guelph, 50 Stone Rd E, Guelph, ON, Canada, N1G 2W1

Abstract. This paper explores the effects of containerization into Con-
tinuous Integration/Continuous Deployment (CI/CD) frameworks to en-
hance test automation processes. The study investigates how container-
ization impacts the efficiency and scalability of testing workflows while
identifying the challenges it introduces. Through an analysis of CI/CD
tools integrated with Docker containers, this research presents both the
benefits and complexities associated with implementing containerized
environments into CI/CD pipelines.

Keywords: Software Testing · Continuous integration · DevOps · Agile
Software Development

1 Introduction

The need for rapid and reliable software releases has intensified with modern de-
velopment practices, making CI/CD pipelines an essential component in many
development environments. CI/CD automates the integration, testing, and de-
ployment of code changes, allowing teams to streamline workflows and reduce
the time-to-market. Recent advancements have introduced containerization tech-
nologies, such as Docker and Kubernetes, into CI/CD, further enhancing the ca-
pabilities of automated test environments by providing isolated and consistent
execution contexts. This research aims to examine the impact of containerization
on CI/CD test automation, focusing on the benefits of increased testing speed,
scalability, and reliability, as well as challenges such as start-up investment, re-
source management, and integration complexities.

2 Background

Integrating Continuous Integration/Continuous Deployment (from here on out
shortened to CI/CD) practices with containerization has revolutionized modern
software development practices. By automating and standardizing the building,
testing, and deployment process of application development, the industry has
been able to foster an environment of faster, and more reliable software delivery.

mailto:obrener@uoguelph.ca
mailto:dmarasin@uoguelph.ca
mailto:emorse@uoguelph.ca

2 Or Brener et al.

Here, we will discuss foundational concepts of CI/CD as well as containeriza-
tion, setting the stage for the investigation of their combined impact on test
automation frameworks.

1. Understanding CI/CD
CI/CD is a set of software development practices which aim to improve
the speed, reliability, and consistency of application delivery. It automates
the software life cycle stages, from code integration to deployment, ensuring
rapid feedback and reducing manual intervention.
– Continuous Integration (CI):

CI involves the frequent integration of code changes into a shared repos-
itory. This process is automated, with each code commit triggering a
build and a series of tests to validate the changes. CI emphasizes early
detection of integration issues, and helps ensure a stable code-base.
Key benefits of CI include:
• Immediate feedback on code quality through automated testing.

• Faster resolution of integration conflicts.

• A stable foundation for subsequent deployment processes.

– Continuous Deployment (CD):
CD extends the principles of CI by automating the deployment of code
changes to production or, a staging environment. Every code change that
passes every test, is staged and automatically released. This ensures a
consistent and rapid delivery cycle.
Key benefits of CD include:
• Accelerated time-to-market by eliminating manual deployment steps.

• Enhanced reliability through consistent and repeatable deployment
processes.

• Reduced risk of errors during deployment.
CI/CD has become a cornerstone of DevOps practices. It fosters a commu-
nity of collaboration among development, operations, and QA teams. By au-
tomating repetitive tasks, and ensuring code stability, CI/CD enables organi-
zations to respond quickly to market demands while maintaining high-quality
standards. Through supporting concepts such as permission to fail and rapid
feedback cycles, CI/CD is perfect for teams working in agile methodology.

2. The Role of Containerization
Containerization is lightweight virtualization approach that encapsulates ap-
plications and their dependencies into portable, isolated units called contain-
ers. Unlike a traditional Virtual Machine (VM), containers share the host
system’s operating system kernel, making them extremely efficient in terms
of resource utilization and startup times.
– Key Features of Containers:

Implementing Containerization into CI/CD Testing 3

• Isolation: each container operates in its own isolated environment,
ensuring that applications run consistently across different systems.

• Portability: Containers can run on any system with a compatible
container runtime, for example Docker.

• Resource Efficiency: Containers are lightweight compare to virtual
machines, enabling higher density and faster scalability.

– Docker and Kubernetes:
Docker is one of the most widely used containerization platforms, provid-
ing tools to build, ship and run containers. Kubernetes is a orchestration
platform, which extends Docker’s capabilities by automating the deploy-
ment, scaling,and management of containerized applications.
Together, these tools are able to address critical challenges often faced
in software development:
• Environment Consistency: Using containers, we are able to ensure

that applications behave identically in development, testing, and pro-
duction environments, reducing the “works on my machine” problem.

• Scalability: Containerization orchestrations platforms, like Kuber-
netes, enable dynamic scaling of applications based on precised de-
mand.

• Rapid Deployment: Containers allow for faster creation of environ-
ments, accelerating testing and deployment cycles.

– Containerization in CI/CD:
Containers are being increasingly integrated into CI/CD pipelines to
enhance their automation and scalability. By running tests in a con-
tainerized environment, CI/CD workflows can achieve:
• Parallel execution of tests in isolated containers, therefore reducing

overall runtime.

• Consistent test results across environments, improving reliability and
communication across teams.

• Streamlined deployments with container images, serving as the de-
ployment artifact.

Despite its advantages, containerization can also introduces challenges such
as security concerns, resource overheads, and management complexity. Ad-
dressing these issues requires careful planning and expertise in container
orchestration.

CI/CD and containerization represent two trans-formative technologies in
modern software development. While CI/CD automates and streamlines the
software life cycle, containerization ensures consistency and scalability across en-
vironments. Their integration creates powerful synergies, enabling faster, more

4 Or Brener et al.

reliable software delivery. What we have described above, should provide the
conceptual foundation for exploring their combined impact on test automation
frameworks.

3 Methodology

This research employs a mixed-methods approach, combining both qualitative
and quantitative analysis to assess the benefits and challenges of implementing
containerization within CI/CD test automation.

3.1 Literature Review

The literature reviewed in this study explores the intersection of container-
ization and CI/CD practices, focusing on their application in automated test
frameworks. The primary goal is to understand how these technologies enhance
efficiency, scalability, and consistency while addressing challenges in their imple-
mentation. This section synthesizes insights from key research sources, offering
a foundation for the present study.

Containerization and its Role in Modern DevOps Practices :
Containerization, particularly through tools like Docker and Kubernetes, has

emerged as a transformative technology in software development. Raj’s research
in Containerization and Its Impact on DevOps Practices highlights its ability
to standardize application deployment and enhance scalability by isolating ap-
plications in lightweight containers. These containers encapsulate application
dependencies, providing a consistent environment across development, testing,
and production stages. This consistency addresses a common problem in soft-
ware development—discrepancies between local and production environments,
colloquially known as the “works on my machine” issue[3].

The research emphasizes containerization’s seamless integration with DevOps
practices, particularly in enabling automation and micro-service architectures.
By supporting independent scaling and deployment of services, containeriza-
tion aligns with agile methodologies, offering faster iteration cycles. However,
the paper also notes significant challenges, including security vulnerabilities in
container images, operational complexity, and resource overheads. Raj’s study
forms a foundation for understanding containerization’s transformative role and
the trade-offs involved.

CI/CD Pipelines and Their Integration with Containerized Environ-
ments :

Mustyala’s work, CI/CD Pipelines in Kubernetes: Accelerating Software De-
velopment and Deployment, delves into how CI/CD pipelines benefit from Ku-
bernetes’ orchestration capabilities. CI/CD automation ensures continuous in-
tegration and testing of code changes, improving collaboration among devel-
opment, operations, and QA teams. By leveraging Kubernetes, these pipelines

Implementing Containerization into CI/CD Testing 5

gain the ability to scale dynamically, automate deployments, and ensure system
reliability through self-healing mechanisms[2]. The paper outlines the critical
role of Kubernetes in ensuring scalability and consistency during deployments.
Kubernetes’ declarative configuration files, such as Helm charts and YAML man-
ifests, ensure that application deployments are consistent and reproducible. Ad-
ditionally, Mustyala highlights the benefits of blue-green and canary deployment
strategies enabled by Kubernetes, which minimize downtime and reduce risk
during software roll outs.

While the integration of CI/CD and Kubernetes accelerates the development
process, the study also emphasizes challenges, including the steep learning curve
of Kubernetes and the operational overhead of managing complex containerized
systems. These findings are critical for framing the scalability and reliability
aspects of containerized CI/CD pipelines.

Parallel Testing in Dockerized CI/CD Frameworks :
Majumder’s thesis, Maximizing Efficiency: Automated Software Testing with

CI/CD Tools and Docker Containerization for Parallel Execution, provides an
in-depth analysis of how Docker containers enhance test automation in CI/CD
pipelines. The study evaluates the execution of regression tests in a container-
ized GitLab CI/CD environment, demonstrating significant reductions in test
execution times through parallelization[1].

The research details a pipeline architecture that builds Docker images, cre-
ates configurations for child pipelines, and triggers parallel execution. The use
of multiple containers ensures that tests run in isolated environments, eliminat-
ing the need for shared resource cleanup between tests. This approach enables
the execution of hundreds of tests concurrently, reducing the time required for
regression testing from hours to minutes.

Majumder also discusses the automatic retry mechanisms incorporated to
address transient test failures, such as network issues or memory constraints.
While the study highlights the advantages of parallel testing, it also identifies
challenges, such as managing system resources and ensuring compatibility across
different operating systems used in containers.

Challenges and Limitations of Containerization in CI/CD :
Despite its benefits, containerization introduces unique challenges in CI/CD

workflows. Raj’s study identifies security concerns as a major limitation, with
vulnerabilities in container images and runtime environments requiring contin-
uous monitoring. Additionally, the resource overhead of managing large-scale
containerized systems can offset the efficiency gains achieved through parallel
execution[3].

Another significant issue is the skill gap in containerization technologies. As
noted in multiple studies, the rapid evolution of tools like Docker and Kubernetes
has created a demand for specialized expertise, which many organizations lack.
This gap can hinder the adoption and effective management of containerized
environments.

6 Or Brener et al.

Moreover, vendor lock-in remains a concern, particularly with proprietary
features of container orchestration tools. Organizations relying heavily on spe-
cific platforms may face challenges in migrating to alternative solutions. This
issue underscores the need for open standards and best practices to ensure in-
teroperability and flexibility in CI/CD workflows.

Best Practices for Implementing Containerized CI/CD Pipelines :
Several studies propose best practices for implementing containerized CI/CD

pipelines. Mustyala recommends adopting declarative configurations for CI/CD
pipelines and Kubernetes resources to ensure reproducibility. Tools like Helm
simplify the deployment of complex applications, while automated rollbacks and
canary deployments minimize risk during updates[2].

Raj emphasizes the importance of security in containerized pipelines. Regu-
larly scanning container images, implementing role-based access control (RBAC),
and defining network policies are crucial steps to mitigate vulnerabilities. Ad-
ditionally, leveraging monitoring tools like Prometheus and Grafana enables or-
ganizations to gain insights into performance and resource utilization, helping
optimize pipelines over time[3].

Majumder highlights the value of parallel execution for improving test effi-
ciency, particularly for large test suites. However, the study advises caution in
scaling parallel tests to avoid overloading system resources. Configuring CI/CD
tools to manage resource allocation dynamically is critical for maintaining sys-
tem stability[1].

The Evolution of CI/CD with Containerization :
The convergence of containerization and CI/CD practices represents a sig-

nificant evolution in software development. Containers not only enhance the
automation of testing and deployment but also enable organizations to embrace
micro-service architectures effectively. By decoupling services and their depen-
dencies, containerization fosters modularity and independent scaling, which are
crucial for modern software systems.

The reviewed studies collectively underscore that while containerized CI/CD
pipelines offer unparalleled efficiency, scalability, and consistency, their imple-
mentation requires careful planning. Organizations must address challenges re-
lated to security, resource management, and skill gaps to fully realize the poten-
tial of these technologies.

The literature demonstrates the trans-formative impact of containerization
on CI/CD practices, particularly in test automation frameworks. While con-
tainers enhance efficiency and scalability, they also introduce complexities that
demand robust solutions. The insights from these studies inform the design and
evaluation of the proposed framework, guiding this research in addressing key
challenges and optimizing the integration of containerization into CI/CD envi-
ronments.

Implementing Containerization into CI/CD Testing 7

3.2 Empirical Analysis

This study investigates the benefits and challenges of implementing container-
ization with CI/CD test automation frameworks through empirical testing. The
focus is on evaluating key performance metrics that reflect the efficiency, scal-
ability, and reliability of containerized test workflows. This section outlines the
experimental design, data collection process, and evaluation metics used in the
study.

Experimental Design :
The empirical testing was conducted using two configurations:

1. Non-Containerized CI/CD Workflow:
A baseline pipeline running tests sequentially in a traditional CI/CD envi-
ronment without containerization. This configuration uses GitHub actions as
the testing environment, executing all test cases in a single, shared runtime.

2. Containerized CI/CD Workflow:
A pipeline configured with a Dockerfile and container to enable scalability
and ease of execution of tests. Each test suite runs within isolated containers,
leveraging a lightweight Python image environment.

The experiment compared the two configurations using identical test cases
to ensure consistency.

Data Collection Process

1. Pipeline Setup:
– The pipelines were set up in a controlled environment to minimize ex-

ternal variability.
– Docker containers were built with predefined base images and dependen-

cies to ensure consistent test environments across iterations
2. Script Development:

– A python script scientific_calculator.py was developed, which in-
cludes a number of small python methods with apparent expected out-
puts.

3. Test Suite:
– The test suite in the file named test_scientific_calculator.py in-

cluded units tests to validate core functionalities of our application.
4. Execution:

– For each configuration, the pipeline was executed 25 times to gather
statistically significant data.

– Results were logged for total workflow runtime, test runtime, and pass/-
failure rates.

8 Or Brener et al.

Evaluation of Metrics :
The performance of the two configurations was evaluated based on the fol-

lowing metrics:

1. Total Workflow Runtime:
– This metrics measures the total time taken form the initiation of the

CI/CD pipeline to the delivery of the final test results. This includes,
but is not limited to, startup time, build time, and test time.

– It provides a comprehensive view of how containerization impacts overall
efficiency, including setup, execution, and reporting stages.

2. Test Runtime:
– This metric focuses specifically on the duration of test execution, exclud-

ing setup and tear-down times.
– It highlights the impact running a containerized instance might have on

testing times.
3. Pass/Failure Rate:

– Pass/Failure rates for individual tests were tracked to ensure accuracy
and consistency of results between the two configurations.

– A mismatch in results would indicate issues with environmental parity
or test dependence.

Statistical Analysis :

– Descriptive statistics (mean, median, and mode) were computed for each
metric to summarize performance trends.

– Inferential statistics, including paired t-tests, were used to assess whether
the observed differences between configurations were statistically significant.

– Anomalous data points, such as outlier runtime or unexpected test failures,
were identified and analyzed to determine their root causes. Although none
were found.

Reliability Measures :

– To ensure reliability, each pipeline was monitored for environmental consis-
tency, including resource allocation (CPU and memory) and network stabil-
ity.

– The containerized pipeline was test for environmental isolation by intro-
ducing minor variations in test environments to confirm that the results
remained unaffected.

– Logs and performance data were stored for reproducibility and audit pur-
poses.

The empirical approach outlined provided a robust framework for evaluating
the efficiency and reliability of containerized CI/CD workflows. By focusing on
workflow runtime, test runtime, and pass/failure rates, the study identifies key
performance trade-offs and highlights the practical implications of containeriza-
tion for automated test environments.

Implementing Containerization into CI/CD Testing 9

4 Findings

The integration of Docker containers within CI/CD pipelines brings several dis-
tinct advantages to test automation:

4.1 Benefits

Efficiency in Test Execution Containers facilitate parallel execution of test
suites, significantly reducing total execution time compared to sequential testing.
For instance, using Dockerized CI/CD pipelines led to faster completion times by
enabling multiple tests to run concurrently within isolated environments[Containerization-
and-its-impact-on-DevOps-practices].

Scalability Containers allow easy scaling of testing environments, especially
when used with Kubernetes orchestration, enabling efficient resource manage-
ment and load distribution during peak testing periods.

Consistency and Portability Containers maintain consistency across differ-
ent testing environments, mitigating the “works on my machine” problem. This
consistency enables seamless transitions from development to production.

4.2 Challenges

However, challenges were also observed:

Resource Overheads : Running multiple containers can strain system re-
sources, particularly CPU and memory, when scaling test suites extensively.

Security and Isolation : Containers introduce security concerns, especially
when handling sensitive data in shared CI/CD environments. Ensuring isolation
between test containers and production systems requires careful configuration.

Complexity in Management : Setting up and maintaining containerized
CI/CD systems can be complex, requiring familiarity with orchestration tools
like Kubernetes and container security best practice.

10 Or Brener et al.

4.3 Graphs and Tables

Run # Non-Containerized Test Run Time (s) Non-Containerized Workflow Run Time (s)
1 0.3 10
2 0.36 10
3 0.27 8
4 0.29 8
5 0.3 10
6 0.33 12
7 0.27 7
8 0.4 13
9 0.32 8
10 0.34 12
11 0.29 12
12 0.26 9
13 0.29 9
14 0.32 7
15 0.27 8
16 0.26 8
17 0.34 8
18 0.28 8
19 0.27 11
20 0.26 8
21 0.26 7
22 0.27 7
23 0.28 8
24 0.31 9
25 0.33 6

Table 1. Raw data from non-containerized runs

Implementing Containerization into CI/CD Testing 11

Run # Containerized Test Run Time (s) Containerized Workflow Run Time (s)
1 0.26 20
2 0.25 14
3 0.31 13
4 0.27 13
5 0.24 16
6 0.26 12
7 0.25 18
8 0.25 17
9 0.25 14
10 0.24 17
11 0.3 15
12 0.3 15
13 0.25 15
14 0.28 13
15 0.27 13
16 0.27 13
17 0.3 16
18 0.29 17
19 0.25 12
20 0.24 13
21 0.24 14
22 0.27 18
23 0.25 14
24 0.26 15
25 0.25 17

Table 2. Raw data from containerized runs

12 Or Brener et al.

Run # Non-containerized Test Run Time / Non-Containerized Workflow Run Time
1 3.00%
2 3.60%
3 3.38%
4 3.63%
5 3.00%
6 2.75%
7 3.86%
8 3.08%
9 4.00%
10 2.83%
11 2.42%
12 2.89%
13 3.22%
14 4.57%
15 3.38%
16 3.25%
17 4.25%
18 3.50%
19 2.45%
20 3.25%
21 3.71%
22 3.86%
23 3.50%
24 3.44%
25 5.50%

Table 3. Test time percentage of total workflow time for non-containerized runs

Implementing Containerization into CI/CD Testing 13

Run # Containerized Test Run Time / Containerized Workflow Run Time
1 1.30%
2 1.79%
3 2.38%
4 2.08%
5 1.50%
6 2.17%
7 1.39%
8 1.47%
9 1.79%
10 1.41%
11 2.00%
12 2.00%
13 1.67%
14 2.15%
15 2.08%
16 2.08%
17 1.88%
18 1.71%
19 2.08%
20 1.85%
21 1.71%
22 1.50%
23 1.79%
24 1.73%
25 1.47%

14 Or Brener et al.

Fig. 1. Graph of test run times

Fig. 2. Graph of workflow times

Implementing Containerization into CI/CD Testing 15

4.4 Statistical Analysis

We collected 4 columns of data:

1. Non-Containerized Test Run Time (s)
– Mean = 0.2988s
– Median = 0.29s
– Mode = 0.27s

2. Non-Containerized Workflow Run Time (s)
– Mean = 8.92s
– Median = 8s
– Mode = 8s

3. Containerized Test Run Time (s)
– Mean = 0.264s
– Median = 0.26s
– Mode = 0.25s

4. Containerized Workflow Run Time (s)
– Mean = 14.96s
– Median = 15s
– Mode = 13s

Descriptive Statistical Analysis The descriptive statistics (mean, median,
and mode) suggest that the containerized tests ran faster on average than the
non-containerized tests, and that the containerized workflow time was signif-
icantly different from the non-containerized workflow time. These suggestions
will be further supported by our inferential statistical analysis.

Inferential Statistics We ran 2 statistical comparisons:

1. Non-Containerized Test Run Time (s) vs. Containerized Test Run Time (s)
2. Non-Containerized Workflow Run Time (s) vs Containerized Workflow Run

Time (s)

For the 1st comparison, we ran a paired t-test using a p-value of 0.5 and the
following hypotheses:

– Null Hypothesis: Non-containerized test time is not longer than containerized
test time.

– Alternative Hypothesis: Non-containerized test time is longer than container-
ized test time.

This resulted in the following t-test output:

Paired t-test

data: data$Non.Containerized.Test.Run.Time..s. and
↪→ data$Containerized.Test.Run.Time..s.

t = 3.8343, df = 24, p-value = 4e-04

16 Or Brener et al.

alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
0.01927208 Inf
sample estimates:
mean of the differences

0.0348

This output shows that p-value is far less than alpha, which was 0.05. This
suggests that we can reject the null hypothesis and conclude that non-containerized
test times are significantly longer than containerized test times.

For the 2nd comparison, we ran a paired t-test using a p-value of 0.05 and
the following hypotheses:

– Null Hypothesis: Non-containerized workflow time is not different from the
containerized workflow time.

– Alternative Hypothesis: Non-containerized workflow time is different from
the containerized workflow time.

This resulted in the following t-test output:

Paired t-test

data: data$Non.Containerized.Workflow.Run.Time..s. and
↪→ data$Containerized.Workflow.Run.Time..s.

t = -10.763, df = 24, p-value = 1.148e-10
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-7.198238 -4.881762
sample estimates:
mean of the differences

-6.04

This output shows that p-value is far less than alpha, which was 0.05. This sug-
gests that we can reject the null hypothesis and conclude that non-containerized
workflow times are significantly different from containerized workflow times.

5 Discussion

5.1 Discussing Results

The findings highlight the dual role of containerization in enhancing efficiency
and introducing new complexities. CI/CD pipelines with Docker containers show
clear efficiency gains, with reductions in test execution time and improved re-
source utilization through orchestration. However, implementing such a frame-
work demands an increased focus on resource management and security proto-
cols. The increased overhead in configuring and managing container orchestra-
tion, especially with Kubernetes, underscores the need for dedicated infrastruc-
ture expertise in maintaining a secure, high-performing CI/CD system.

Implementing Containerization into CI/CD Testing 17

The trade-offs between efficiency gains and the complexity of containerized
test management underscore the importance of strategic planning in container-
ization efforts. Organizations must evaluate their specific testing requirements
and system resources when deciding to implement containers within their CI/CD
framework.

5.2 Connecting to Literature Review

Our Solution vs. Parallel Testing Our findings give a glimpse of the benefits
of using containerized vs. non-containerized workflows for test automation, par-
ticularly in reducing total workflow runtime. However, our study did not incor-
porate parallel testing within the containerized CI/CD pipeline. Referring back
to Majumder’s discussion about Parallel Testing in Dockerized CI/CD Frame-
works in our Literature Review, parallel execution of test suites was identified
as a key advantage of containerization [1]. This change significantly reduces exe-
cution time by enabling multiple tests to run simultaneously in isolated environ-
ments. If we had implemented parallel testing in our containerized pipeline, the
increase in efficiency compared to the non-containerized workflow would likely
have been much more significant. The ability to execute tests concurrently could
have further reduced test runtimes and improved the scalability advantages of
containers. Future studies could explore the inclusion of parallel testing to fully
leverage the capabilities of containerization and validate its impact on large-scale
test automation workflows.

Thoughts on Resource Overhead As discussed in Section 3.1, under “Chal-
lenges and Limitations of Containerization in CI/CD”, one of the challenges with
implementing containerization in CI/CD workflows is limiting resource overhead.
Especially in large-scale software, containerized pipelines require a great amount
of resources such as CPU and memory. Modern and currently-in-development
software services such as GitHub Actions help mitigate this overhead. Github
Actions allow developers to configure job concurrency, set resource limits, and
use caching mechanisms to reduce redundant computations. These abilities help
limit the challenges of resource overhead. Ultimately, as CI/CD technology con-
tinues to improve, this will enable teams and companies with access to less
resources and lower budgets to implement containerized CI/CD workflows.

Thoughts on the Skill Gap Another challenge that was discussed in Sec-
tion 3.1 was the skill gap that is required in the set up and maintenance of a
containerized CI/CD workflow. As CI/CD and containerizing technologies con-
tinue to evolve, a concern in the industry is that the cost of training and finding
specialized developers may increase. However, tools like GitHub Actions sim-
plify the process by removing much of the low-level work required to set up a
containerized CI/CD workflow. For instance, we were able to set up a simple
non-containerized CI/CD workflow in less than 30 minutes.

18 Or Brener et al.

Of course, this process gets longer when you include containerization. How-
ever, the same argument can be made for tools like Docker. As containeriza-
tion rapidly becomes more standardized in the software industry, companies like
Docker will make processes that streamline the process of setting up a container
and integrating it into a CI/CD workflow. We may very well see more and more
templates in GitHub “Actions” that make the creation of Docker files much more
straightforward. These pre-built workflows are just one of the examples of how
modern software tools mitigate the challenges of the skill gap required for com-
panies to adopt containerized CI/CD workflows.

Summary of Challenges After Findings It is clear that the sub-fields of
containerization and CI/CD are rapidly growing. Thus, even though companies
are discovering new challenges and limitations related to the technology, DevOps
companies are continuously releasing new products and updates to old products
that include fixes and improvements.

6 Conclusion

Containerizing CI/CD test automation frameworks provides significant benefits
in terms of efficiency, scalability, and consistency across development environ-
ments. However, it also introduces challenges related to resource consumption,
security, and operational complexity. Despite these challenges, the advantages
of containerization, particularly for parallel execution and resource flexibility,
suggest that containerized CI/CD systems can offer a substantial return on in-
vestment for organizations looking to streamline their development workflows.
Future research should further explore optimization techniques and best prac-
tices for managing containerized CI/CD systems at scale, particularly focusing
on security and automation.

References

1. Majumder, R.: Maximizing Efficiency: Automated Software Testing with CI. Mas-
ter’s thesis, Ohio University (2024)

2. Mustyala, A.: CI/CD pipelines in kubernetes: Accelerating software development
and deployment. EPH- International Journal of Science And Engineering 8(3) (Feb
2022). https://doi.org/10.53555/ephijse.v8i3.238

3. Raj, A.: Containerization and its impact on DevOps practices. International Journal
of AdvancedandInnovativeResearch 10(1) (Aug 2024)

Appendices

A.1 Dockerfile

https://doi.org/10.53555/ephijse.v8i3.238
https://doi.org/10.53555/ephijse.v8i3.238

Implementing Containerization into CI/CD Testing 19

1 # Start with a lightweight Python image
2 FROM python:3.10-slim
3
4 # Set the working directory inside the container
5 WORKDIR /app
6
7 # Copy the requirements file into the container
8 COPY requirements.txt /app/
9

10 # Install dependencies
11 RUN pip install --no-cache-dir -r requirements.txt
12
13 # Copy only the Research-paper-code directory and necessary files

↪→ into the container
14 COPY Research-paper-code /app/Research-paper-code
15 COPY requirements.txt /app/
16
17 # Set the working directory to Research-paper-code
18 WORKDIR /app/Research-paper-code
19
20 # Run pytest --cov on Research-paper-code directory with coverage
21 CMD ["pytest", ".", "--cov"]

A.2 requirements.txt

1 pytest==8.3.3
2 pytest-cov==6.0.0

A.3 python-app.yaml

1 name: PyTest
2
3 on:
4 push:
5 branches:
6 - main
7
8 permissions:
9 contents: read

10
11 jobs:
12 run-tests-uncontainerized:

20 Or Brener et al.

13 name: Run Tests uncontainerized
14
15 runs-on: ubuntu-latest
16
17 steps:
18 - uses: actions/checkout@v4
19 - name: Set up Python 3.10
20 uses: actions/setup-python@v3
21 with:
22 python-version: "3.10"
23 - name: Install dependencies
24 run: |
25 python -m pip install --upgrade pip
26 if [-f requirements.txt]; then pip install -r

↪→ requirements.txt; fi
27 - name: Test with pytest
28 run: |
29 pytest ’Research-paper-code/’ --cov
30
31 run-tests-docker:
32 name: run tests in a docker container
33 runs-on: ubuntu-latest
34
35 steps:
36 # Step 1: Check out the repository
37 - name: Checkout repository
38 uses: actions/checkout@v3
39
40 # Step 2: Log in to Docker Hub (if pushing image is needed)
41 - name: Log in to Docker Hub
42 uses: docker/login-action@v2
43 with:
44 username: ${{ secrets.DOCKER_USERNAME }}
45 password: ${{ secrets.DOCKER_PASSWORD }}
46
47 # Step 3: Build the Docker image
48 - name: Build Docker image
49 run: |
50 docker build -t myapp:latest .
51
52 # Step 4: Run the Docker container
53 - name: Run Docker container
54 run: |
55 docker run --rm myapp:latest

Implementing Containerization into CI/CD Testing 21

A.4 Test Results

Un-containerized:

---- coverage: platform linux, python 3.10.15-final-0 ----
Name Stmts Miss Cover
--
scientific_calculator.py 69 3 96%
test_scientific_calculator.py 194 3 98%
--
TOTAL 263 6 98%

Containerized:

---- coverage: platform linux, python 3.10.15-final-0 ----
Name Stmts Miss Cover

scientific_calculator.py 69 3 96%
test_scientific_calculator.py 194 3 98%

TOTAL 263 6 98%

You can see there is no difference in the results

	The Impact of Implementing Containerization into CI/CD Testing Pipelines

